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A CHARACTERIZATION OF MAXIMAL SURFACES IN

TERMS OF THE GEODESIC CURVATURES

Eunjoo Lee*

Abstract. Maximal surfaces have a prominent place in the field of
differential geometry, captivating researchers with their intriguing
properties. Bearing a direct analogy to the minimal surfaces in
Euclidean space, investigating both their similarities and differences
has long been an important issue. This paper is aimed to give a local
characterization of maximal surfaces in L3 in terms of their geodesic
curvatures, which is analogous to the minimal surface case presented
in [8]. We present a classification of the maximal surfaces under
some simple condition on the geodesic curvatures of the parameter
curves in the line of curvature coordinates.

1. Introduction

A maximal surface is a spacelike surface in the three-dimensional
Lorentz-Minkowski space L3 with vanishing mean curvature. Here, a
spacelike surface is defined to be a surface in L3 whose induced metric
is positive definite.

Maximal surfaces share some analogous properties with minimal sur-
faces in the 3-dimensional Euclidean space E3. For example, maximal
surfaces locally maximize the area in the variational sense, which is
why they are named that way. Additionally, maximal surfaces have a
Weierstrass-Enneper type representation formula [6], which is reminis-
cent of its Euclidean counterpart.

Nevertheless, substantial differences between maximal and minimal
surfaces emerge both locally and globally. For instance, maximal sur-
faces may have non-isolated singularities, which lead them to have much
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more complicated local geometry. And, a Calabi-Bernstein type theo-
rem for maximal surfaces [3] asserts that a complete regular maximal
surface must be a spacelike plane.

Given these similarities and distinctions, constructing interesting max-
imal surfaces or investigating their rigidities becomes a meaningful pur-
suit. Various approaches, such as utilizing the Weierstrass-Enneper type
representation formula and the Björling formula, have been commonly
employed. Presented below are notable results in this context.

Alias, Chaves and Mira [1] solved the Björing problem in L3 to gen-
erate new examples. Kim and Yang [7] constructed complete higher
genus maximal surfaces with singularities, having two catenoidal ends.
F. López, R. López and Souam [10] classified the maximal surfaces foli-
ated by peices of circles. I. Fernández and F. López [5] demonstrated a
reflection principle for maximal surfaces with respect to an isolated sin-
gularity. Umehara and Yamada [12] proved that the complete maximal
surfaces with singularities satisfy the Osserman-type inequality.

This paper focuses on characterizing maximal surfaces in terms of
their geodesic curvatures of lines of curvature. Specifically, if the prod-
uct of the conformal factor of the metric and the geodesic curvature of
each line of curvature of a non-planar umbilic-free maximal surface is a
single variable function, then up to isometries and homotheties of L3,
the surface must be a piece of one and only one of Enneper surface of
first or second kind, catenoid of first or second kind, or one surface in
Bonnet family.

To that end, we first list up some properties of non-planar umbilic-free
maximal surfaces in the line of curvature coordinates. We then compute
the geodesic curvatures of lines of curvature to see that they can be
expressed by the conformal factor of the metric. Finally, we observe
that if the product of the geodesic curvature of each line of curvature
and the conformal factor has single-variable, then our maximal surface
must have planar lines of curvature. We note that this characterization
is local in nature.

2. Preliminaries and Notations

The three dimensional Lorentz-Minkowski space L3 is the vector
space R3 endowed with the Lorentzian metric

⟨(x1, x2, x3), (y1, y2, y3)⟩ := x1y1 + x2y2 − x3y3

where (x1, x2, x3) and (y1, y2, y3) are the canonical coordinates in R3.
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For x⃗ = (x1, x2, x3), y⃗ = (y1, y2, y3) in L3 the cross product x⃗ × y⃗ is
defined as

x⃗× y⃗ = (x2y3 − x3y2, x3y1 − x1y3, x2y1 − x1y2)

so that the relation ⟨x⃗× y⃗, z⃗⟩ = det(x⃗, y⃗, z⃗) holds for any z⃗ ∈ L3.
A nonzero vector x⃗ ∈ R3 is called spacelike, timelike or lightlike if and

only if ⟨x⃗, x⃗⟩ is positive, negative or zero, respectively. A spacelike sur-
face is a surface in L3 such that all tangent vectors to it are everywhere
spacelike.

For a spacelike surface we define the Gauss map G : Σ → H2 to be a
map which assigns to each point of the surface the unit normal vector
at that point, where H2 = {x⃗ ∈ L3 | ⟨x⃗, x⃗⟩ = −1} is the two sheeted
hyperboloid. It is easy to check that the Gauss map of a maximal
surface is conformal. This leads us to the following local representation
formula for maximal surfaces which is analogous to minimal surfaces in
E3.

Weierstrass-Enneper type representation formula. Any con-
formal maximal surface X : Σ ⊂ C → L3 is represented as

X(z) =
1

2
Re

∫
(f(1 + g2), if(1− g2),−2fg) dz

over a simply-connected domain Σ where g is meromorphic and f and
fg2 are holomorphic.

We refer [6] for the proof and further investigation regarding the
Weierstrass-Enneper type representation formula.

Lastly, for a non-planar umbilic-free maximal surface in a simply
connected domain, a pair of lines of curvature at each point can be
introduced as the parameter curves. See Chapter 2 in [2].

3. Main Results

The following proposition is analogous to the Euclidean case demon-
strated in [8], which can be proved through a straightforward computa-
tion.

Proposition 3.1. Let X : Σ ⊂ R2 → L3 be a non-planar umbilic-
free maximal immersion of a simply connected domain Σ. Then, there
always exists a change of variables such that in the new parameter

z = u + iv ∈ C we have ⟨Xzz, N⃗⟩ = −1
2 for the timelike unit nor-

mal vector field N⃗ : Σ → H2 of X. Furthermore, the new coordinates
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(u, v), which will be called the conformal lines of curvature coordinates,
have the following properties.

(i) Coordinate curves are lines of curvatures.
(ii) The Gauss-Weingarten equations are

(3.1)



Xuu = ρu
ρ Xu − ρv

ρ Xv + N⃗ ,

Xuv = ρv
ρ Xu + ρu

ρ Xv,

Xvv = −ρu
ρ Xu + ρv

ρ Xv − N⃗ ,

N⃗u = 1
ρ2

Xu,

N⃗v = − 1
ρ2

Xv.

Let Σ be a non-planar umbilic-free maximal surface in the conformal
lines of curvature coordinates (u, v). Then, Proposition 3.1 tells us that
the first and second fundamental form of Σ become I = ρ2(du2 + dv2)
and II = −du2 + dv2, respectively.

Now let us proceed to show that, at each point of Σ, the geodesic
curvatures of lines of curvature–i.e., the coordinate curves in our setting–
are expressed by the conformal factor of the metric.

Lemma 3.2 (Geodesic curvatures of lines of curvature). Let X : Σ →
L3 be a non-planar umbilic-free spacelike maximal surface in with the
conformal lines of curvature coordinates (u, v). Let l1 and l2 be the
u-parameter curve and the v-parameter curve, respectively. Then the
geodesic curvature (κg)li of li (i = 1, 2) and the conformal factor ρ2 have
the following relation.

(κg)l1 = −ρv
ρ2

and (κg)l2 =
ρu
ρ2

Proof. Let C(t) be a curve on X(u, v) in the neighborhood of a non-
umbilic point p = X(u0, v0) and let ϕ be the angle between C ′(t) and the
velocity vectorXu(u, v0) of the u-parameter curve at p. Here we consider
that ϕ is independent on t. In other words, C(t) = X(t cosϕ, t sinϕ).
Denote by s the arclength parameter. From

ds

dt
= |cosϕXu + sinϕXv| = ρ

we have

dC

ds
= ρ−1C ′(t) = ρ−1 (cosϕXu + sinϕXv) .
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Consequently,

d2C

ds2
= ρ−1 d

dt

(
ρ−1 (cosϕXu + sinϕXv)

)
= −ρ−3

(
(ρu cosϕ+ ρv sinϕ) (cosϕXu + sinϕXv)

+ ρ−2
(
cos2 ϕXuu + 2 cosϕ sinϕXuv + sin2 ϕXvv

)
= ρ−3

(
(ρv cosϕ sinϕ− ρu sin

2 ϕ)Xu + (ρu cosϕ sinϕ− ρv cos
2 ϕ)Xv

+ ρ(cos2 ϕ− sin2 ϕ)N⃗
)

by Proposition 3.1(ii). Hence, the tangential component of d2C
ds2

becomes

d2C

ds2

∣∣∣∣
TΣ

= ρ−3(sinϕ ρu − cosϕ ρv)(− sinϕXu + cosϕXv)

= ρ−2 (sinϕ ρu − cosϕ ρv) N⃗ × C ′(s).

Thus, κg = ρ−2(sinϕ ρu − cosϕ ρv). Therefore, the geodesic curvatures
of parameter curves satisfy

(κg)l1 = κg
∣∣
ϕ=0

= −ρv
ρ2

, (κg)l2 = κg
∣∣
ϕ=π/2

=
ρu
ρ2

.

Theorem 3.3. Let Σ be a non-planar umbilic-free maximal surface
in L3 with ds2 = ρ2(du2 + dv2). Let (κg)l1 and (κg)l2 be the geodesic
curvatures of lines of curvature l1 and l2 at each point of Σ. If ρ2(κg)l1
is a function of v-variable and ρ2(κg)l2 is a function of u-variable only,
then, up to isometries and homotheties of L3, Σ must be a piece of one
and only one of the following surfaces:
• Enneper surface of first or second kind,
• catenoid of first or second kind,
• one surface in Bonnet family.

Proof. Since ρ2(κg)l1 is a function of v and ρ2(κg)l2 is a function of
u, Lemma 3.2 implies that ρuv = ρvu = 0. Using (3.1), we compute Xu×
Xuu andXuuu to derive that ρuv = 0 is equivalent to det(Xu, Xuu, Xuuu) =
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0 as follows.

Xu ×Xuu =Xu ×
(
ρu
ρ

Xu − ρv
ρ

Xv + N⃗

)
= −ρv

ρ
Xu ×Xv +Xv,

Xuuu =
ρuuρ− ρ2u

ρ2
Xu +

ρu
ρ

Xuu − ρvuρ− ρvρu
ρ2

Xv −
ρv
ρ

Xvu + N⃗u

=
ρuuρ− ρ2u

ρ2
Xu +

ρu
ρ

(
ρu
ρ

Xu − ρv
ρ

Xv + N⃗

)
− ρvuρ− ρvρu

ρ2
Xv

− ρv
ρ

(
ρv
ρ

Xu +
ρu
ρ
Xv

)
+ N⃗u

=
1

ρ2
(ρuuρ− ρ2v + 1)Xu − 1

ρ2
(ρuvρ+ ρuρv)Xv +

ρu
ρ
N⃗.

Since N⃗ is timelike,

det(Xu, Xuu, Xuuu) = ⟨Xu ×Xuu, Xuuu⟩ = ⟨−ρv
ρ

Xu ×Xv +Xv, Xuuu⟩

= −ρvρu
ρ2

⟨Xu ×Xv, N⃗⟩ − 1

ρ2
(−ρuvρ+ ρuρv)⟨Xv, Xv⟩

= ρuvρ.

This implies that ρuv = 0 if and only if det(Xu, Xuu, Xuuu) = 0. In
the same manner, it is straightforward to prove that ρuv = 0 if and
only if det(Xv, Xvv, Xvvv) = 0. Therefore, u-parameter curves and v-
parameter curves are plane curves. Since the parameter curves of Σ are
lines of curvature, the classification result of the maximal surfaces with
planar lines of curvature obtained in [9] leads us to conclude that our
non-planar maximal surface Σ ⊂ L3 must be a piece of one and only one
of Enneper surface of first or second kind, Catenoid of first or second
kind, or one surface in Bonnet family.

Remark 3.4. Concerning the last part of our proof, we note that the
maximal surfaces with planar lines of curvature, in fact, have not been
fully classified until Leite [9] proposed a method analogous to Nitsche’s
approach about the classification of the minimal surfaces with planar
lines of curvature in the Euclidean space E3. Namely, Nitsche proved
that a connected orientable minimal surface with planar lines of cur-
vature in E3 must be a piece of one and only one of plane, Enneper
surface, catenoid or one surface in the Bonnet family [11]. The main
ingredient of his proof was to check that the planar lines of curvature
are transformed by the Gauss map of the given minimal surface into the
orthogonal families of circles on S2. Leite showed that this approach
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can be applicable to the maximal surface case to give an anaologous
classification.

And, an alternative method was developed in [4] to reach the same
classification result. The authors first solved a system of partial differen-
tial equations for the metric function and found some axial directions to
recover the Weierstrass data and parametrizations of maximal surfaces
with planar lines of curvature. More specifically, they solved the equa-
tion ρuv = 0 together with the Gauss equation, deriving that ρu = f(u)
and ρv = g(v) for some single valued functions f(u) and g(v). And then
they recover f(u) and g(v) to get the classification and singularities of
the surface. Our theorem implies that such f(u) and g(v) are actually
the geodesic curvatures of lines of curvature multiplied by the conformal
factor. In fact, this property remains valid in the Euclidean case [8]. In
this respect, the geodesic curvatures of lines of curvature can be a key
factor to classify the surfaces with planar lines of curvature.
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[2] A. I. Bobenko, U. Eitner, Painlevé equations in the differential geometry of sur-
faces, Lecture notes in mathematics, 1753, Springer-Verlag, Berlin, 2000.

[3] S.Y. Cheng, S.T. Yau, Maximal spacelike hypersurfaces in the Lorentz-Minkowski
spaces, Ann. Math., 104, (1976), 407-419.

[4] J. Cho, Y. Ogata, Deformation and singularities of maximal surfaces with planar
curvature lines, Beitr. Algebra. Geom., 59 (2018), 465-489.
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